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Abstract: This study proposes a mathematical model to investigate stability of arteries. The artery is considered as a prestressed 
thick-walled tube subjected to dynamical pressure and made of a hyperelastic and composite material. In this context, the purpose of 
this work focuses on the initial formation of the pathology in human arteries which may be modeled as instability phenomena. For that, 
a perturbation technique is used on the equations of motion to highlight possible instabilities of the artery. This instability interpretation 
provides a theoretical approach. 
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1. Introduction 

 
The study of the stability of an equilibrium point 
of a nonlinear ordinary differential equation is 
relatively trivial if the function that defines the 
equation is sufficiently regular one hand, and if 
the linearization at the equilibrium is hyperbolic. 
In this case, we know that the differential equation 
is equivalent to the linearized equation [1]. 
But if the situation is not hyperbolic, the 
determination of stability becomes more difficult. 
It then proceeds generally to the method of 
linearisation. [2]. 
We study the phenomena of instability by a 
perturbation technique. 
The study of the existence and stabilization of the 
solution of the perturbed system is based on 
inequalities of integrals [3, 4], on systems 
Petrovsky [5] or on Lyapunov function. 
The study of buckling of cylindrical shells under 
combined load of axial compression and pressure 
extrenal was made by Shen and Chen [6]. 
As for the analysis of the instability of cylindrical 
shells under hydrostatic pressure, we can cite the 
work of Barush and Singer [7]. 
The qualitative theory of differential equations in 
a self-analysis around a fixed point leads to 
consideration of a Stability around this point. 
This leads naturally to a study of how the behavior 
near this point can change by changing the control 
parameters such as the Reynolds number in a 
hydrodynamic system. Such studies are now well 
developed [8], and methods varied.  

The study of phenomena of stability in this work 
will be based on the assumption that the artery is 
similar to a cylindrical orthotropic [9]. 
 
The arterial wall consists of an elastic material 
that can undergo large deformations and large 
displacements.  
The material of the wall is supposed transverse 
and anisotropic. The energy of such materials in a 
hyperelastic has been given by Spencer [10], and 
specific forms of these potentials have been 
studied [11, 12]. 
In this work, we study a part of the dynamic 
behavior of the shell subjected to pressure on the 
inside and outside and other conditions of 
stability. 
The objective is to simulate conditions frequently 
encountered such as the development of 
aneurysms: an unstable behavior leads to a non-
symmetrical shape of the vessel. Austin et al. [13] 
and Akkas [14] believe that instability due to the 
development of the aneurysm can result in 
behavior of the branching structure. For Simkins 
[15] and Hung [16], the aneurysm can become 
dynamically unstable due to pulsatile blood flow. 
Both studies are based on linear elasticity, despite 
the nonlinear behavior of hyperelastic structures 
and large deformations arising. 
Cons by Shah and Humphrey [17] showed that a 
lesion such as aneurysm, can be dynamically 
stable if one takes into account the effects of 
solid-fluid coupling. 
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In this work, we use the technique called 
interference. The motivation of this work is a 
contribution to the study of asymptotic behavior, 
when the supposed positive control parameter 
tends to zero, the solution of an evolution problem 
with non-classical boundary conditions are 
unusual. 
We study these phenomena by the instability 
behavior of a cylindrical shell, subjected to 
pressure on its inner and outer. The objective is to 
simulate conditions frequently encountered, such 
as the development of an aneurysm.  
 

2. Basic Formulae 
We consider that the artery is modeled by a 
hollow tube of circular cross section subjected to 
an intraluminal inflation, reflecting the loading 
pressure during a cardiac cycle. 
We call configuration ,0  the zero stress state at 
zero deformation; configuration ,1  the prestressed 
condition caused by the presence of residual stress 
without any external change; and configuration ,2  
the state that reflects the deformed configuration 
of the vessel induced by the change in pressure. 
The coordinate system chosen is that of the 
cylindrical configuration. RM  is a material point 
identified by its coordinates ( )ZR ,,Θ  in the 
configuration ,0  becomes the point ρM  of 
coordinates ( )ξφρ ,,  in configuration ,1  to finally 
become point rM  of coordinates ( )zr ,,θ  in 
configuration 2 . Subsequently, we take the 
notation ""i  and ""o  to express the respective 
inner and outer boundary of the vessel wall. 
 
 

 
Fig.1:Cross-section of the tube in (a) stress-free, 

(b) unloaded, (c) loaded configuration 
 
 
Based on the assumptions outlined above, one can 
describe the kinematics of the model. For this, we 
note 1F  the gradient of the transformation that 
defines the transition from the configuration 0 to 

the configuration .1  This first deformation is 
described by: 

,,),(
0

ZR =
Θ
Θ

== ζπφρρ (1)   

where 0Θ  is the half-opening angle of the wall in 
the configuration .0  
Given (1), the matrix representation of 1F in the 
cylindrical base is written: 
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On the other hand, the configuration ,2 which 
reflects the charged state is defined from a second 
gradient transformation 2F This second 
deformation is described by:  
 

.0,),,(),( ξλφθρ ==== ztRrtrr  (3) 
where 0λ is the axial elongation and .00 Θ=πα . 
Given (3), the matrix representation of 2F in the 
cylindrical base is written: 
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The gradient tensor of the total transformation F  
(configuration 0 to configuration 2 ) is thus: 
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This allows expressing the strain tensor left 
Cauchy-Green :C  
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Note that for this kinematics of deformation, the 
strain tensor right Cauchy-Green is such 
that .CB =  
If we consider a transverse isotropic material, and 
if [ ]ZR TTT ,, Θ=T is the principal direction of 
orthotropy in the undeformed configuration, the 
isotropy of the material in the orthogonal 
directions to T implies that the hyperelastic 
potentialW is expressed using the three 
invariants ( )321 ,, III of the Cauchy-Green tensor 
[18] and two pseudo invariants ( )54 , II  [10] 
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This potential ( )5,4,3,21 , IIIIIW can be 
decomposed into two terms, an isotropic 
component isoW and a component orthotropic 

ortW [10]. 
 
If one considers a material of St Venant 
Kirchhoff, we obtain [18, 19]. 
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where λ and µ are the Lame’s constants, and 
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with ./and21 T

2
0 EEnnm =−−= νν  

TE and TG denote the tensile modulus and shear in 
the direction of fibers. 
With de neo-Hookeen material, the isotropic 
component is based on 3)det( IJ == F  by: 

 
( )

.
2

1

)1ln()2/1(

)ln(3

−+

−−=

J

JIWiso µµ
  (10) 

 
The transverse component is written 
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Afterwards it is proposed to study the phenomena 
of instability in the behavior of the arterial wall. A 
solution of the equation of motion of a thick 
orthotropic shell is desired, and then a 
perturbation technique is used to highlight 
possible instabilities. 
 

3. Equation of motion and radial solution  
 
Define a constitutive law describing the 
mechanical behavior of hyperelastic nonlinear 
back to defining a constitutive relation between 
stress and strain.  Recall that for a hyperelastic 
material, the Cauchy stress tensor ,σ is derivable 
from the strain energy function per unit mass [20, 
21]. Specifically, it is represented as 

,
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where ρ is the density of the material in its 
deformed state, which is related to the density its 
reference configuration, ).det(0 Fρρ =  
The first stress tensor of Piola-Kirchoff π  and the 
Cauchy stress tensor are given by 
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where ),det(F=J ( ) ( ),51/ ≤≤∂∂= kIWW kk I deno

tes the identity tensor and .4IFTa =  
 
 
With the equations (10), (11) and (13), and in the 
absence of body forces, the equation of motion is 
given by: 
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Working hypothesis, we choose an orientation of 
fibers as follows: [ ],1,0,0=T and taking into 
account the kinematics (3) and expressions 
of ( ) ( ),51/ ≤≤∂∂= kIWW kk the equation (14) 
becomes 
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  (15) 
 
To study the phenomena of instability in the 
behavior of the arterial wall, we seek fist a trivial 
solution of equation (15) as: 

)().(),( tHRGtRr = .  (16) 
 
We limit the study of stability in a cardiac cycle 
that lasts about on second. This allows us to move 
to a limited development in the variable t and for 
convenience, we choose the first order. 
The form  

),1.(),( tRtRr +=   (17) 
 
is a solution of the equation (15) if and only if 
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4. Linearization of the equations near the 

trivial solution 
What happens if we perturb the solution (17) 
slightly? 
To find the evolution of the fluctuations around 
this solution, we apply the technique standard 
linearization around this position. We put 

),,(.)1.(),( tRtRtRrr Ψ++== ε   (19) 
 whereε  is a small parameter quantifying the 
magnitude of disturbance and tR,(Ψ to determine 
an unknown. 

We set as a new kinematics [22]: 
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where 0ϕ is the solution defined in (17).  
In the cylindrical base ( ),,, zr eee 

θ ..0 rerer 
Ψ+= εϕ  

We set ),),1(,1(diag 000 λα tt ++=F obtained by 
asking 0),( ϕ=tRr in (5). 
We then write also: 

( ) .... 000 ΦFFF εεεϕ +=Ψ∇+=Ψ+∇=  (21) 
 
The first tensor of Piola-Kirchhof is developed 
using the derivation in the sense of  Gâteaux: 
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With ( ) ( )000

0 and FF ππ == kk WW the tensor 
associated with .0F  
The linearized problem is equivalent to: 
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whereΩ is the field inside the cylinder. 
In the equation of motion defined en (21), let 
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and conduct limited development of the 
function ),( εΨH with order 2 , under .ε  
 
To resolve the problem (23), then we set: 
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The equation of motion reduces to 
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The boundary value problem amounts to solving 
the equation (24) with the following boundary 
conditions:  
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where )(~ trO  is the outer radius of the arterial wall 

measured at time t of a patient, iR and OR  the inner 
and outer radii in the reference state.  It should be 
noted that the shape of a ),( tRr takes into account 
(19), (20) and form thing for ).,( tRΨ  These 
boundary conditions (25) correspond to the 
experimental data of kinematic variation of the 
arterial wall during a cardiac cycle in patients. 
Note that they were fitted by Fourier series as [23] 
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Equation (24) has the form of a Bessel equation. 
Indeed, it is of the form: 
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Equation (27) thus admits as solution 
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With 10 and AA integration constants obtained from 
the boundary conditions (25), 

).(and).( RmKRmI ϑϑ are modified Bessel functions 
of orderυ respectively first and second kind.  
This leads to the solution of problem (23) and 
therefore the general shape of the radial 
displacement defined in (20): 
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5. Results and discussion 
 
The model that we used took into account the 
residual stresses. Some authors have highlighted 
the presence of residual stresses in the arterial wall 
matrix. These constraints can be described by a 
nonzero opening angle when the arterial segment 
is dissected along its length. We based on the 
work of Anissa Eddhahak-Uni et al. [24] who 
proposed a range of value of 
angle [ ].180,60)(0 ∈°Θ  For the simulation we 
choose an angle of .120°  
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 The determination of geometric parameters of 
the wall studied in the reference condition is very 
complex. To estimate the inner and outer radii in 
the reference state, we started observations of 
Delfino et al. [25].This allows us to 
consider .71.3,21.3 mmRmmR Oi ==  
 Figure 2 shows the influence of disturbances on 
the variation with time of the radial deformation at 
the inner surface of the arterial wall. 
We note that the radial deformation increases with 
the disturbance. Inside the wall, and the 
theoretical point of view, we can assume that 
these disturbances may represent an aneurysm. 
Inflammation is also defined as the response of 
tissue to injury. Beginning as a small dilatation of 
the arterial wall, the disturbances can expand to 
over 10 cm in diameter as shown by Vorp [26]. 
This expansion may lead to a rupture. This 
confirms the work of Jiu-sheng REN et al. [27] 
who argue that the rupture of aneurysms is often 
followed by the formation of an intraluminal or 
intramural thrombus. 

 
Fig. 2: Influence of perturbation on the radial 

deformation for .iRR =  

Figures ba 3,3 and c3 , respectively show the 
influence of distu rbances on the stress 
distribution θθσσ ,rr and zzσ to iR during a cardiac 
cycle. 

 

                  Fig. 3a: Influence of perturbation 
on ),( tRR irr =σ  

 

             Fig. 3b: Influence of perturbation 
on ),( tRR i=θθσ  

 

                Fig. 3c: Influence of perturbation 
on ),( tRR izz =σ  
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We find that the stress distribution mainly radial 
stress is very sensitive to disturbance. This is 
understandable given first described in the 
kinematic equations (3) and (19).  
In interpreting these results in biomechanics and 
assimilate disruptionε  to an aneurysm, we can 
argue that the larger the size of the aneurysm is 
more important radial stress is large. This will 
result in an inflammation of the structure, and 
therefore a risk of rupture. This confirms the work 
of Jiu-Sheng and Xue-gang [27]. The influence of 
disturbances that we note at the radial stress leaves 
appears instability phenomena in the arterial wall. 
In general, we say that a solution to a problem that 
it is stable if it is insensitive to variations in data. 

It is important to note that the analysis of 
instability depends very much on the constitutive 
material model the artery wall. This model 
involves the derivatives (as John) potential 
relative to the first five invariants. we analyzed the 
dynamic behavior of a hyperelastic modeling the 
structure of an artery wall. Possibilities of 
instabilities have been implemented. 
Considering the disturbances as pathologies such 
as aneurysms, we believe that 
 
the formation, enlargement, and rupture of an 
arterial wall can be described by the model 
presented in this paper and the effect of other 
factors is discussed. 
  Aneurysms can form in the arterial wall under 
abnormal conditions if the rigidity of collagen 
fibers decreased to some extent. 
  Aneurysms can be instability of the arterial wall, 
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